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The finite-difference method and one-dimensional approximation are used to con- 
sider the processes of decay of an initial pressure discontinuity for the in- 
dividual cases of its position in a bounded region. 

The classical problem of one-sided and two-sided nonstationary flows of gas from a cyl- 

inder as a result of an increased initial pressure in the cylinder is encountered in various 
modifications in the study of gasdynamic processes in many technical devices, e.g., in shock 

tubes. 

One encounters physical situations in which the residual pressure in the cylinder is 
created by instantaneous heating of the gas. The development of the nonstationary process 
depends here, in particular, on the relationship between the lengths of the cylinder and of 

the heated zone, and also on the position of this zone. 

In the present work we numerically study the decay of a pressure discontinuity in a 
cylinder of finite length. One end of the cylinder is open to the atmosphere at finite pres- 
sure and the other end is insulated at various positions of the heated zone, which can take 
up the whole volume, or part of the volume near the open end, near the closed end, or in the 
center of the cylinder. 

The problem was solved in the one-dimensional approximation, and the processes were as- 
sumed to be adiabatic. However, instead of the adiabatic curve, we used the general equa- 

tion of state. This is because, in the thermodynamic viewpoint, the system in question is 
not closed, i.e., the parameters of the gas flowing into the system from the external medium 
at the suction stage do not satisfy the equation of the adiabatic curve for the initial work- 
ing substance. In the equation of motion we took into account the force of viscous friction 
averaged over the cross section. The local resistance at the open end was taken into account 
in the form of a boundary condition -- as a pressure drop proportional to the square of the 
outflow velocity. The initial distributions of pressure and temperature were determined by 

the position of the heated zone. The system of equations that describes the nonstationary 
process has the form 

au au I ap %7. 

at ax p ax pF 
8p + ~ (.,ou)=O, 
%7- (1) 

8T 8~ ar +.--+(k-l)t -=o ,  
at #z c~:~ 

p/p~ =can_t, const = p{poT~. 

Here TI, p,, Po are the initial values of temperature, pressure, and density of the gas, re- 
spec tively. 
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The form of To will be chosen according to [I] (p. 97): 

40 -- -~ OU , 

and the friction coefficient % is assumed, as in the case of stationary motion, to be de- 
pendent on the Reynolds number Re according to the relation 

~ = 0,00332 q- 0,221-Re - ~  ,237, 

Re 4rhU9 ~ . _ _ ,  rr~- F/x. 
[t 

In the system (i), we go over to dimensionless quantities by taking the quantities L, 
go, po, Po, L/ao, To as the scales of length, velocity, pressure, density, time, and tempera- 
ture, respectively. By writing the system (i) for the dimensionless quantities (for which we 
retain the previous notation) we obtain 

Ou Ou 1 Op = 
o---i- + " ~  + k~ Ox - f (u), 

O p q_tz cgp + k p  OU=o,  
d,t Ox Ox 

3T 3u O----T--T + u - - -  + (t~ - -  1) T = O, 
c?t dx  Ox 

(2) 

%L 
p = pT, f (u) = u 2 

8~ 

In writing the equation of state, we took into account the equality of the dimensional 
ratios Pa/Po, TI/To during an isochoric heating. By taking r h = 0.15 m, L = 4 m, ~ = 1.61" 
10 -5 N.sec/m 2, the right-hand side of the equation of motion will be written in the follow- 
ing form: 

f (~) = 0.01 | 1 [1 @ 1.25 (9u) - ~  .aaT] uZ" (3)  

We shall now write the boundary conditions for the system (2): 

i) At the closed end, 

u = 0 ,  T = T ~  for x = 0 ,  t ~ 0 ,  . 

if the heated zone is close to the closed end, and 

at=0, T= T o for x=0, t>0 

in all other cases. 

P = P o ,  T = T o  for x =  1, t > 0 .  
2) At the open end 

The initial conditions for the functions of the system (2) will be the values 

(4) 

(4') 

(5) 

u = 0 ,  p = p l ,  T = T 1  for t = 0 ,  X o ~ X ~ X l ,  (6)  

u = 0, p --  Po, T = To for t ---- 0, / X1 < x ~  1, 
[O~x<xo. 

In agreement with the general theory of solutions of the systems of hyperbolic equations 
[2, 3], for a numerical solution the system must be transformed to an invariant form. We 
shall omit the derivation and write down the equivalent system with Riemann invariants: 

__~ + i X + + V-~") ox f ( x + Y 

0---[- + " 2 / Ox 2 ' 

(7) 
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Here the Riemann invariants are 

P, dp ~ dp �9 X In(Y/p h ). 
x = ~ +  - - ;  Y = = u - -  i / '~( ,~ 

P* 

(8) 

Using (4) and (5), the boundary conditions for the functions (8) will be written in the 

form: 

i) At the closed end, 

X@Y=0; Z==In(T,/pl ~ ) for x 0, t>0, (9) 

if the heated zone is very near the closed end, and 

X @  Y -  O, Z = O  for x - -O;  t > O  

in  a l l  o c h e r  c a s e s .  

2) At the open end, 

po dp 
X - - Y = (  

The initial conditions have the form 

- - ;  Z = O  for x---- i, t~-'>O. 

po dp ; Z = O  for t==O,  i O < x < ! '  
X = Y : -  3 k]/'-p-p { x , < x < l ,  

P, 

h--1 

(lO) 

X-= Y = O, Z =  In(T1/pl h--7) for t =  O, xo~x~_ .x l .  ( l l )  

Since (7)-(ii) is a problem with mixed boundary conditions, it is necessary to match the 
boundary and initial conditions to ensure the existence of a continuous solution in the in- 
ternal points of the region t > 0, 0 ~x ~i. 

For subsonic flows ~ >  (X + Y)/2, and the direction of the characteristics for the in- 

variant X will always be positive, for Y it will always be negative, and for the invariant Z 
the direction of the characteristics at some moment of time will, for each coordinate, change 

sign in accordance with the sign of the characteristic velocity u = (X + Y)/2. The matching 
conditions at the open end are satisfied automatically, since the initial values of the in- 

variants at point x = 0 satisfy the boundary conditions. This is also true for the open 
end if the heated zone is not completely adjacent to it. Since at the first stage of outflow 

the characteristic velocity for Z is positive (u > 0), one must specify here the boundary 

condition from the left (x = 0). Consequently one does not need to match the conditions for 

this invariant at the open end (x = i). It is therefore necessary to match only the initial 
values of the invariants X and Y at the point x = i, with the first condition (i0) for the 

combination X -- Y. Since for X one does not need to specify the boundary condition from the 
right, it is natural to assume that it is continuous by including the boundary point x = i, 

i.e., X = 0 for x = i, t = 0. The requirement of matching then leads to the discontinuity of 
the initial value of Y at point x = 0. The discontinuity is determined from the first con- 
dition (i0) in the form 

~o dp 
X =  O; Y = - - 2  j for t = 0 ,  x =  1. (12) 

p, 

The discontinuity of the initial value of the invariant Y at the boondary point at the 
open end is a consequence of the pressure discontinuity at the initial moment, which leads 
to a sudden occurrence of outflow velocity uo. The magnitude of the velocity Uo, which re- 
mains constant at the boundary of the rarefaction wave until the moment of its reflection 
from the end wall, is determined by the formula 

o dp (13) 
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To take into account the local resistance at the open end, we shall assume that the 

characteristics of resistances established for stationary motion of the liquid in tubes with 
a sudden pressure variation are also retained for the nonstationary motion ([i], D. 178). 
The pressure loss by the local resistance is determined by the relation 

U 2 

A p  = - -  po = - 7  

The coefficient of local resistance ~ can be taken equal to unity when the outflow is into 
the atmosphere. We then obtain 

U z (14) 
= po + o - 2  

and in Eqs. (i0, 12) the upper limit in the integral should be taken as p~ instead of po. 

The problem (7)-(11) was solved numerically by using an explicit scheme of the finite- 
difference approximation of Eq. (7). We do not give the recurrence finite-difference rela- 

tions for the stepwise determination of the quantities in the nodes. These problems were 
discussed in detail in [5] for the adiabatic outflow (the situation when the third equation 
in the system (i) is absent). We shall only note the important features of this problem. 

The requirement that the system of finite-difference equations satisfies the conditions 

of Courant, Fridriechs, and Levy ([4], Sec. 24) leads to the fact that the third equation in 
the system (7) must be written in the form of two finite-difference schemes which correspond 

to the positive and negative values of characteristic velocity u = (X + Y)/2 for the invari- 
ant Z. In the first case, the derivative OZ/Oxat the instantaneous point i should be replaced 

by the backward difference ratio (Z i -- Zi_~)/h and one should use the left-hand boundary condi- 
tion for Z. In the second case, the derivative should be replaced by the forward difference 

ratio (Zi+1--Zi)/h and one should use the right-handboundary condition. For the convergence 
of the finite difference scheme it is also necessary that the ratio of the steps m and h sat- 
isfies the condition ~/h < i, where T is the time step, h is the coordinate step, and a is 
the largest value of. the three characteristic velocities which can be reached during the out- 
flow process. 

It is easily seen that for a one can take the value a = Uo + ~-; we have here Uo > 0. 

The recurrence difference equations which approximate the first two Eqs. (7) contain the 
quantity Z as a parameter in terms of the temperature T. Consequently, a change of the quan- 

tities X and Y when one goes from one time layer to another takes place at constant Z. There- 

fore, in Eqs. (8) one can calculate the integral by expressing p in terms of p/T, and T in 

the third Eq. (8) in terms of p and Z, and assuming that Z is a parameter. As a result, we 

obtain the following relations: 

k--1  h--1 
X = u  + 2 e x p ( Z / 2 ) ( p - S K - _ _ p ~  2k ); 

k - - 1  

k--I h--1  
2 exp (Z/2) 2h ( 1 5 )  

Y=u-- (p ~k __p~ ); 
k - - 1  

k--1  

Z = l n ( T / p  h ). 

Hence, after obtaining the numerical results one can easily obtain the formulas for the 
transition from the invariants to the initial variables u, p, T, O. 

Taking into account Eqs. (15), we obtain the following expression for the velocity uo 

during the initial outflow period: 

2 ] / -T]  h - i  
u ~  k ~  [1--(Po/Pl) 2k ], 

a c c o r d i n g  t o  w h i c h ,  f o r  t h e  n u m e r i c a l  v a l u e s  k = 1 . 4 ,  po = 1 ,  p~ = T~ = 1 . 6 ,  t h e  q u a n t i t y  Uo 
i s  e q u a l  t o  0 . 4 1 .  

Given numerical values of the quantities a~ 1.7, the condition of convergence has the 
form m/h < 0.6. In the calculations we used h = 0.01, m = 0.001, which satisfies the above 

condition. 
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Fig. I. The distributions of pressure (a, e) and tempera- 
ture (b, d) along the cylinder for consecutive moments of 
time. 

In the analysis of the results it is necessary to bear in mind that using an explicit 
finite-difference scheme leads to the numerical "smoothing out" of the initial data, which 

is associated with the approximate viscosity (h - T)/2 in this scheme ([4], Sec. 25). For this 
reason, the discontinuities of pressure and temperature during the propagation of waves are 

not sharply pronounced but are smeared over space, which resembles the pattern for the rare- 

faction waves, where the smearing of the initial discontinuities of pressure and temperature 
is determined by the physical essence of the process. 

For the case when the heated zone takes up the whole volume of the cylinder, the calcu- 

lations were carried out in three variants. In the first variant, we did not take into ac- 
count friction at the walls and the forces of local resistance at the open end. During the 
outflow stage (until the moment when the minimum pressure (~0.6) is established in the vol- 
ume, and the external medium is beginning to be sucked in), the distribution of the gasdy- 
namic quantities over time and space is exactly the same as when one uses the equation of 
the adiabatic curve [5]. However, during the suction stage they are considerably different. 
For example, the maximum value of pressure in the cylinder and of the temperature of the resi- 
due of the original gas after the completion of suction, considerably exceed their initial 
values (for the initial pressure and temperature of 1.6, these quantities will be ~1.89 and 
~1.67, respectively). At the first sight, this result is paradoxical. However, it does not 
contradict the law of energy conservation. The total energy of a unit mass of the substance 
in the cylinder after the completion of the compression stage does not exceed its initial 
value. An increase of the potential energy of the pressure takes place as a result of de- 
creasing the internal energy of the system, since the temperature of the gas which enters 
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Fig. 2. The time dependence of pressure near the 
closed end. The region of heat dissipation takes up 
2/3 of the volume of the cylinder near the open end. 

from outside and displaces the outflowing part of the original gas is below the temperature 
of the gas which remains in the cylinder after expansion. 

In the second variant, we took into account the resistance of friction of the gas at 
the walls, and the local resistance at the open end of the cylinder was neglected. As was 

to be expected, the results differ weakly from the corresponding results neglecting friction 
(maximum values of gasdynamic quantities during a period differ only in the third signifi- 
cant figure). 

In the third variant, we included both the resistance of friction of the gas at the 

walls as well as the forces of local resistance at the open end. It was established that in 
this case one has a considerable damping of the process with time. To clarify the character 
of this damping, we calculated the distributions of gasdynamic quantities for a sufficiently 

large time interval equal to 25 characteristic units (i characteristic unit = L/ao~ 0.012 
sec). From these distributions we obtained the dependence of pressure on time near the 

closed end (the structure of this curve is similar to the graph in Fig. 2, where the valleys 
are replaced by peaks). For the initial pressure discontinuity of 0.6, after the first pe- 
riod (~3.75 characteristic units) the maximum pressure was 1.63, and when the friction was 

neglected, this value was equal to 1.89. The losses were equal to Ap = 0.26. 

During eight periods, the pressure is reduced to approximately 60% of the initial dis- 
continuity. These results agree qualitatively with the experimental data in a shock tube 
[6]. The temperature distribution makes it possible to obtain information about the position 
of the contact surface between the heated and external gases. We found that the contact sur- 
face in the present problem reaches the point ~0.6, i.e., the external medium reaches, through 
the open end, the depth ~0.4 of the length of the cylinder. 

Figures la,b show the distributions of pressure and temperature at the early stage of 
the outflow process for the case when the heated zone takes up half of the volume of the cyl- 

inder near the closed end. The number 0 denotes the initial values of the quantities. The 
graphs correspond to the moments of time t n = nat, where n is the number of the curve (n = 
i, 3, 5, 7, 9), and At = 0.08 characteristic units. Figure la clearly shows the propagation 
of the rarefaction wave to the left of the center of the cylinder towards its closed end 
(the upper parts of graphs i, 3, and 5) and of the compression wave to the right of the cen- 
ter of the cylinder towards its open end (the lower parts of graphs I, 3, and 5), and also 
the backward propagation of the reflected rarefaction waves (graphs 7 and 9). It is seen 
from Fig. ib that the contact surface in the present time interval moves to the right from 

the center of the cylinder towards its open end. 

Using the same notation as in Figs. la and b, Figs. ic and d show the distributions of 
pressure and temperature at an early stage of the outflow process when the heated zone is 
positioned at the center of the cylinder. It is seen from Fig. ic that the evolution pat- 
tern of the pressure distribution is considerably more complex than in the previous case. 
This is a result of the appearance (in the region of the cylinder which is free from heating) 
of compression waves, the interaction of the rarefaction and compression waves, and of the 
direct waves and waves reflected from the closed end. 

In the case when the heated zone takes up 2/3 of the volume of the cylinder near the 
open end, the calculations of distributions of pressure, velocity, and temperature were 
carried out until the moment of time equal to 25 characteristic units. It was shown that 
the contact surface which separates the heated gas from the cold gas near the closed end 
reaches only up to the point ~0.22. Therefore, in a large part of the region which is free 
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from heating, the changes of temperature during the outflow process are negligible. The con- 
tact surface near the open end shows that during the suction process the external medium 

reaches the depth ~0,38 of the length of the cylinder. The distribution of pressure was 
used to determine the dependence of pressure on time, which is shown in Fig. 2. 

NOTATION 

x is the coordinate along the axis of the cylinder; t, time; u, velocity; p, pressure; 
p, density; k, exponent of the adiabatic cnrve; X, wetted perimeter of the cylinder; F, 
cross-sectional area of the cylinder; To, force of friction of the liquid against the cylin- 
der walls per unit area; 4, friction coefficient; rh, hydraulic radius of the cylinder; ~, 
coefficient of dynamical viscosity; Re, Reynolds number; and a, speed of sound. The sub- 
script 0 refers to the conditions of the external medium, and 1 to the perturbed conditions. 
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HEAT TRANSFER BETWEEN THREE MEDIA IN TRIPLE COUNTERCURRENT 

PIPE FLOW 

E. E. Shpil~rain and K. A. Yakimovich UDC 536.27 

A method is discussed for calculating the thermodynamic characteristics asso- 
ciated with the interaction of three fluid flows in pipes. Analytical rela- 
tions are derived for the case of triple concentric countercurrent flow. 

The calculation of heat transfer between two media flowing in the same or opposite di- 
rections does not present any difficulties. Recently, however, there has been a growing num- 
ber of problems in which it is required to calculate heat transfer in the simultaneous inter- 
action of three flows, but the literature does not offer analytical solutions for determining 
the temperature profile along the flow axis, the quantity of heat transmitted across the sep- 
arating surface, and other characteristics. The number of combinations along the relative 
direction of motion of the media and in the direction of heat transfer can be enormous in 
this case. The most complicated situation in this class of problems is triple concentric 
countercurrent flow of the media. 

In particular, e.g., the recent efforts aimed at intensifying petroleum recovery have 
created the important problem of supplying heat to oil-bearing strata at great depths~ One 
of the more promising methods of solving this problem is to create a deep underground steam 
generator of adequate output, situated in the downhole zone, with injection of the generated 
steam into the oil stratum. The specific attributes of this problem are that, first, it is 
required to lower the steam generator through a drivepipe with a diameter of 150-200 mm and, 
second, to supply the steam generator with air, fuel, and water and to exhaust the combustion 
products to the surface of the earth. At the same time, it is necessary to maintain the 
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